Magic Squares of odd order
Magic Squares of odd order by Marios Mamzeris
This page presents the Mamzeris Method: a systematic approach to constructing associative magic squares of any odd order using simple two-pass transformations or direct mathematical formulas.
The Origin Story
I developed this method in 1988 while studying computer science. When my university's mathematics faculty presented what they called an 'unsolved problem' in magic square construction, they challenged me to apply my programming background to find a systematic solution. What emerged was a universal algorithmic method that works for any odd-order magic square. I used this method personally for over three decades before publishing it in 2020, along with a new universal closed-form formula that enables direct calculation of any cell position.
A Magic Square is an n × n square grid (where n is the number of cells on each side) filled with distinct positive integers in the range 1,2,...,n2 such that each cell contains a different integer and the sum of integers in each row, column, and diagonal is equal.
An associative magic square has an elegant property: pairs of numbers positioned symmetrically opposite the centre always sum to n2 + 1. For example, in a 7×7 square (n²=49), opposite pairs sum to 50. These are also called symmetric magic squares, and all associative magic squares are self-complementary. (Wikipedia)
The Mamzeris Method offers two complementary approaches:
1. Algorithmic Construction (detailed below): A two-pass table transformation using row and column shifts. Best for learning, teaching, or manual construction.
2. Universal Closed-Form Formula: A direct mathematical formula that computes the value of any cell position (x, y) for any odd order N. This formula, published in 2025, enables instant calculation without iterative steps. Best for programming, large squares, or individual cell calculations. View the complete mathematical formula
Algorithmic Construction Method:
To create any odd-order associative magic square quickly and efficiently using the algorithmic approach, we need to perform only two simple passes, which I call table transformations (shifts). The three tables below demonstrate the construction of a 31×31 magic square.
Pass 1: Begin with a table filled sequentially with all numbers from 1 to n2 (1st table below, with cells shifting shown in green). Perform a left shift of all rows, skipping the middle one: shift the first row by one cell, the second row by two cells, and so on, until the last (nth) row is shifted by n−1 cells.
Pass 2: Apply a similar transformation to columns instead of rows. Shift cells upward, starting with one cell in the leftmost column, two cells in the next column, and so on, until the last (nth) column is shifted by n−1 cells, skipping the middle column. This is shown in the 2nd table below with cells shifting in blue.
That's it. A magic square is ready. The completed square is shown in the 3rd table below, with alternating grey cells and highlighted yellow diagonals.
1. Initial Table: Begin with numbers from 1 to n2 arranged sequentially
The green arrow indicates the direction of the upcoming cell shift. Green-highlighted cells show which cells will move.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | ||
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | |
| 2 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | |
| 3 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | |
| 4 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | |
| 5 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | |
| 6 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | |
| 7 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | |
| 8 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | |
| 9 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 | |
| 10 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 | 301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | |
| 11 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 325 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 | 341 | |
| 12 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 | 351 | 352 | 353 | 354 | 355 | 356 | 357 | 358 | 359 | 360 | 361 | 362 | 363 | 364 | 365 | 366 | 367 | 368 | 369 | 370 | 371 | 372 | |
| 13 | 373 | 374 | 375 | 376 | 377 | 378 | 379 | 380 | 381 | 382 | 383 | 384 | 385 | 386 | 387 | 388 | 389 | 390 | 391 | 392 | 393 | 394 | 395 | 396 | 397 | 398 | 399 | 400 | 401 | 402 | 403 | |
| 14 | 404 | 405 | 406 | 407 | 408 | 409 | 410 | 411 | 412 | 413 | 414 | 415 | 416 | 417 | 418 | 419 | 420 | 421 | 422 | 423 | 424 | 425 | 426 | 427 | 428 | 429 | 430 | 431 | 432 | 433 | 434 | |
| 15 | 435 | 436 | 437 | 438 | 439 | 440 | 441 | 442 | 443 | 444 | 445 | 446 | 447 | 448 | 449 | 450 | 451 | 452 | 453 | 454 | 455 | 456 | 457 | 458 | 459 | 460 | 461 | 462 | 463 | 464 | 465 | |
| 16 | 466 | 467 | 468 | 469 | 470 | 471 | 472 | 473 | 474 | 475 | 476 | 477 | 478 | 479 | 480 | 481 | 482 | 483 | 484 | 485 | 486 | 487 | 488 | 489 | 490 | 491 | 492 | 493 | 494 | 495 | 496 | |
| 17 | 497 | 498 | 499 | 500 | 501 | 502 | 503 | 504 | 505 | 506 | 507 | 508 | 509 | 510 | 511 | 512 | 513 | 514 | 515 | 516 | 517 | 518 | 519 | 520 | 521 | 522 | 523 | 524 | 525 | 526 | 527 | |
| 18 | 528 | 529 | 530 | 531 | 532 | 533 | 534 | 535 | 536 | 537 | 538 | 539 | 540 | 541 | 542 | 543 | 544 | 545 | 546 | 547 | 548 | 549 | 550 | 551 | 552 | 553 | 554 | 555 | 556 | 557 | 558 | |
| 19 | 559 | 560 | 561 | 562 | 563 | 564 | 565 | 566 | 567 | 568 | 569 | 570 | 571 | 572 | 573 | 574 | 575 | 576 | 577 | 578 | 579 | 580 | 581 | 582 | 583 | 584 | 585 | 586 | 587 | 588 | 589 | |
| 20 | 590 | 591 | 592 | 593 | 594 | 595 | 596 | 597 | 598 | 599 | 600 | 601 | 602 | 603 | 604 | 605 | 606 | 607 | 608 | 609 | 610 | 611 | 612 | 613 | 614 | 615 | 616 | 617 | 618 | 619 | 620 | |
| 21 | 621 | 622 | 623 | 624 | 625 | 626 | 627 | 628 | 629 | 630 | 631 | 632 | 633 | 634 | 635 | 636 | 637 | 638 | 639 | 640 | 641 | 642 | 643 | 644 | 645 | 646 | 647 | 648 | 649 | 650 | 651 | |
| 22 | 652 | 653 | 654 | 655 | 656 | 657 | 658 | 659 | 660 | 661 | 662 | 663 | 664 | 665 | 666 | 667 | 668 | 669 | 670 | 671 | 672 | 673 | 674 | 675 | 676 | 677 | 678 | 679 | 680 | 681 | 682 | |
| 23 | 683 | 684 | 685 | 686 | 687 | 688 | 689 | 690 | 691 | 692 | 693 | 694 | 695 | 696 | 697 | 698 | 699 | 700 | 701 | 702 | 703 | 704 | 705 | 706 | 707 | 708 | 709 | 710 | 711 | 712 | 713 | |
| 24 | 714 | 715 | 716 | 717 | 718 | 719 | 720 | 721 | 722 | 723 | 724 | 725 | 726 | 727 | 728 | 729 | 730 | 731 | 732 | 733 | 734 | 735 | 736 | 737 | 738 | 739 | 740 | 741 | 742 | 743 | 744 | |
| 25 | 745 | 746 | 747 | 748 | 749 | 750 | 751 | 752 | 753 | 754 | 755 | 756 | 757 | 758 | 759 | 760 | 761 | 762 | 763 | 764 | 765 | 766 | 767 | 768 | 769 | 770 | 771 | 772 | 773 | 774 | 775 | |
| 26 | 776 | 777 | 778 | 779 | 780 | 781 | 782 | 783 | 784 | 785 | 786 | 787 | 788 | 789 | 790 | 791 | 792 | 793 | 794 | 795 | 796 | 797 | 798 | 799 | 800 | 801 | 802 | 803 | 804 | 805 | 806 | |
| 27 | 807 | 808 | 809 | 810 | 811 | 812 | 813 | 814 | 815 | 816 | 817 | 818 | 819 | 820 | 821 | 822 | 823 | 824 | 825 | 826 | 827 | 828 | 829 | 830 | 831 | 832 | 833 | 834 | 835 | 836 | 837 | |
| 28 | 838 | 839 | 840 | 841 | 842 | 843 | 844 | 845 | 846 | 847 | 848 | 849 | 850 | 851 | 852 | 853 | 854 | 855 | 856 | 857 | 858 | 859 | 860 | 861 | 862 | 863 | 864 | 865 | 866 | 867 | 868 | |
| 29 | 869 | 870 | 871 | 872 | 873 | 874 | 875 | 876 | 877 | 878 | 879 | 880 | 881 | 882 | 883 | 884 | 885 | 886 | 887 | 888 | 889 | 890 | 891 | 892 | 893 | 894 | 895 | 896 | 897 | 898 | 899 | |
| 30 | 900 | 901 | 902 | 903 | 904 | 905 | 906 | 907 | 908 | 909 | 910 | 911 | 912 | 913 | 914 | 915 | 916 | 917 | 918 | 919 | 920 | 921 | 922 | 923 | 924 | 925 | 926 | 927 | 928 | 929 | 930 | |
| 31 | 931 | 932 | 933 | 934 | 935 | 936 | 937 | 938 | 939 | 940 | 941 | 942 | 943 | 944 | 945 | 946 | 947 | 948 | 949 | 950 | 951 | 952 | 953 | 954 | 955 | 956 | 957 | 958 | 959 | 960 | 961 |
2. After First Pass: Rows shifted, columns ready for transformation
The blue arrow indicates the direction of the second shift. Blue-highlighted cells show which cells will move.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | ||
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 1 | |
| 2 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 32 | 33 | |
| 3 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 63 | 64 | 65 | |
| 4 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 94 | 95 | 96 | 97 | |
| 5 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 125 | 126 | 127 | 128 | 129 | |
| 6 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 156 | 157 | 158 | 159 | 160 | 161 | |
| 7 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | |
| 8 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | |
| 9 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | |
| 10 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 | 301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | |
| 11 | 322 | 323 | 324 | 325 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 | 341 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 | 321 | |
| 12 | 354 | 355 | 356 | 357 | 358 | 359 | 360 | 361 | 362 | 363 | 364 | 365 | 366 | 367 | 368 | 369 | 370 | 371 | 372 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 | 351 | 352 | 353 | |
| 13 | 386 | 387 | 388 | 389 | 390 | 391 | 392 | 393 | 394 | 395 | 396 | 397 | 398 | 399 | 400 | 401 | 402 | 403 | 373 | 374 | 375 | 376 | 377 | 378 | 379 | 380 | 381 | 382 | 383 | 384 | 385 | |
| 14 | 418 | 419 | 420 | 421 | 422 | 423 | 424 | 425 | 426 | 427 | 428 | 429 | 430 | 431 | 432 | 433 | 434 | 404 | 405 | 406 | 407 | 408 | 409 | 410 | 411 | 412 | 413 | 414 | 415 | 416 | 417 | |
| 15 | 450 | 451 | 452 | 453 | 454 | 455 | 456 | 457 | 458 | 459 | 460 | 461 | 462 | 463 | 464 | 465 | 435 | 436 | 437 | 438 | 439 | 440 | 441 | 442 | 443 | 444 | 445 | 446 | 447 | 448 | 449 | |
| 16 | 466 | 467 | 468 | 469 | 470 | 471 | 472 | 473 | 474 | 475 | 476 | 477 | 478 | 479 | 480 | 481 | 482 | 483 | 484 | 485 | 486 | 487 | 488 | 489 | 490 | 491 | 492 | 493 | 494 | 495 | 496 | |
| 17 | 513 | 514 | 515 | 516 | 517 | 518 | 519 | 520 | 521 | 522 | 523 | 524 | 525 | 526 | 527 | 497 | 498 | 499 | 500 | 501 | 502 | 503 | 504 | 505 | 506 | 507 | 508 | 509 | 510 | 511 | 512 | |
| 18 | 545 | 546 | 547 | 548 | 549 | 550 | 551 | 552 | 553 | 554 | 555 | 556 | 557 | 558 | 528 | 529 | 530 | 531 | 532 | 533 | 534 | 535 | 536 | 537 | 538 | 539 | 540 | 541 | 542 | 543 | 544 | |
| 19 | 577 | 578 | 579 | 580 | 581 | 582 | 583 | 584 | 585 | 586 | 587 | 588 | 589 | 559 | 560 | 561 | 562 | 563 | 564 | 565 | 566 | 567 | 568 | 569 | 570 | 571 | 572 | 573 | 574 | 575 | 576 | |
| 20 | 609 | 610 | 611 | 612 | 613 | 614 | 615 | 616 | 617 | 618 | 619 | 620 | 590 | 591 | 592 | 593 | 594 | 595 | 596 | 597 | 598 | 599 | 600 | 601 | 602 | 603 | 604 | 605 | 606 | 607 | 608 | |
| 21 | 641 | 642 | 643 | 644 | 645 | 646 | 647 | 648 | 649 | 650 | 651 | 621 | 622 | 623 | 624 | 625 | 626 | 627 | 628 | 629 | 630 | 631 | 632 | 633 | 634 | 635 | 636 | 637 | 638 | 639 | 640 | |
| 22 | 673 | 674 | 675 | 676 | 677 | 678 | 679 | 680 | 681 | 682 | 652 | 653 | 654 | 655 | 656 | 657 | 658 | 659 | 660 | 661 | 662 | 663 | 664 | 665 | 666 | 667 | 668 | 669 | 670 | 671 | 672 | |
| 23 | 705 | 706 | 707 | 708 | 709 | 710 | 711 | 712 | 713 | 683 | 684 | 685 | 686 | 687 | 688 | 689 | 690 | 691 | 692 | 693 | 694 | 695 | 696 | 697 | 698 | 699 | 700 | 701 | 702 | 703 | 704 | |
| 24 | 737 | 738 | 739 | 740 | 741 | 742 | 743 | 744 | 714 | 715 | 716 | 717 | 718 | 719 | 720 | 721 | 722 | 723 | 724 | 725 | 726 | 727 | 728 | 729 | 730 | 731 | 732 | 733 | 734 | 735 | 736 | |
| 25 | 769 | 770 | 771 | 772 | 773 | 774 | 775 | 745 | 746 | 747 | 748 | 749 | 750 | 751 | 752 | 753 | 754 | 755 | 756 | 757 | 758 | 759 | 760 | 761 | 762 | 763 | 764 | 765 | 766 | 767 | 768 | |
| 26 | 801 | 802 | 803 | 804 | 805 | 806 | 776 | 777 | 778 | 779 | 780 | 781 | 782 | 783 | 784 | 785 | 786 | 787 | 788 | 789 | 790 | 791 | 792 | 793 | 794 | 795 | 796 | 797 | 798 | 799 | 800 | |
| 27 | 833 | 834 | 835 | 836 | 837 | 807 | 808 | 809 | 810 | 811 | 812 | 813 | 814 | 815 | 816 | 817 | 818 | 819 | 820 | 821 | 822 | 823 | 824 | 825 | 826 | 827 | 828 | 829 | 830 | 831 | 832 | |
| 28 | 865 | 866 | 867 | 868 | 838 | 839 | 840 | 841 | 842 | 843 | 844 | 845 | 846 | 847 | 848 | 849 | 850 | 851 | 852 | 853 | 854 | 855 | 856 | 857 | 858 | 859 | 860 | 861 | 862 | 863 | 864 | |
| 29 | 897 | 898 | 899 | 869 | 870 | 871 | 872 | 873 | 874 | 875 | 876 | 877 | 878 | 879 | 880 | 881 | 882 | 883 | 884 | 885 | 886 | 887 | 888 | 889 | 890 | 891 | 892 | 893 | 894 | 895 | 896 | |
| 30 | 929 | 930 | 900 | 901 | 902 | 903 | 904 | 905 | 906 | 907 | 908 | 909 | 910 | 911 | 912 | 913 | 914 | 915 | 916 | 917 | 918 | 919 | 920 | 921 | 922 | 923 | 924 | 925 | 926 | 927 | 928 | |
| 31 | 961 | 931 | 932 | 933 | 934 | 935 | 936 | 937 | 938 | 939 | 940 | 941 | 942 | 943 | 944 | 945 | 946 | 947 | 948 | 949 | 950 | 951 | 952 | 953 | 954 | 955 | 956 | 957 | 958 | 959 | 960 |
3. Completed Magic Square: Final result after both transformations
All rows, columns, and diagonals now sum to the magic constant. Grey cells alternate for visibility, and yellow highlights show the main diagonals.
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | ||
| 1 | 34 | 67 | 100 | 133 | 166 | 199 | 232 | 265 | 298 | 331 | 364 | 397 | 430 | 463 | 480 | 17 | 498 | 531 | 564 | 597 | 630 | 663 | 696 | 729 | 762 | 795 | 828 | 861 | 894 | 927 | 960 | |
| 2 | 66 | 99 | 132 | 165 | 198 | 231 | 264 | 297 | 330 | 363 | 396 | 429 | 462 | 479 | 527 | 49 | 530 | 563 | 596 | 629 | 662 | 695 | 728 | 761 | 794 | 827 | 860 | 893 | 926 | 959 | 1 | |
| 3 | 98 | 131 | 164 | 197 | 230 | 263 | 296 | 329 | 362 | 395 | 428 | 461 | 478 | 526 | 528 | 81 | 562 | 595 | 628 | 661 | 694 | 727 | 760 | 793 | 826 | 859 | 892 | 925 | 958 | 31 | 33 | |
| 4 | 130 | 163 | 196 | 229 | 262 | 295 | 328 | 361 | 394 | 427 | 460 | 477 | 525 | 558 | 560 | 113 | 594 | 627 | 660 | 693 | 726 | 759 | 792 | 825 | 858 | 891 | 924 | 957 | 30 | 32 | 65 | |
| 5 | 162 | 195 | 228 | 261 | 294 | 327 | 360 | 393 | 426 | 459 | 476 | 524 | 557 | 559 | 592 | 145 | 626 | 659 | 692 | 725 | 758 | 791 | 824 | 857 | 890 | 923 | 956 | 29 | 62 | 64 | 97 | |
| 6 | 194 | 227 | 260 | 293 | 326 | 359 | 392 | 425 | 458 | 475 | 523 | 556 | 589 | 591 | 624 | 177 | 658 | 691 | 724 | 757 | 790 | 823 | 856 | 889 | 922 | 955 | 28 | 61 | 63 | 96 | 129 | |
| 7 | 226 | 259 | 292 | 325 | 358 | 391 | 424 | 457 | 474 | 522 | 555 | 588 | 590 | 623 | 656 | 209 | 690 | 723 | 756 | 789 | 822 | 855 | 888 | 921 | 954 | 27 | 60 | 93 | 95 | 128 | 161 | |
| 8 | 258 | 291 | 324 | 357 | 390 | 423 | 456 | 473 | 521 | 554 | 587 | 620 | 622 | 655 | 688 | 241 | 722 | 755 | 788 | 821 | 854 | 887 | 920 | 953 | 26 | 59 | 92 | 94 | 127 | 160 | 193 | |
| 9 | 290 | 323 | 356 | 389 | 422 | 455 | 472 | 520 | 553 | 586 | 619 | 621 | 654 | 687 | 720 | 273 | 754 | 787 | 820 | 853 | 886 | 919 | 952 | 25 | 58 | 91 | 124 | 126 | 159 | 192 | 225 | |
| 10 | 322 | 355 | 388 | 421 | 454 | 471 | 519 | 552 | 585 | 618 | 651 | 653 | 686 | 719 | 752 | 305 | 786 | 819 | 852 | 885 | 918 | 951 | 24 | 57 | 90 | 123 | 125 | 158 | 191 | 224 | 257 | |
| 11 | 354 | 387 | 420 | 453 | 470 | 518 | 551 | 584 | 617 | 650 | 652 | 685 | 718 | 751 | 784 | 337 | 818 | 851 | 884 | 917 | 950 | 23 | 56 | 89 | 122 | 155 | 157 | 190 | 223 | 256 | 289 | |
| 12 | 386 | 419 | 452 | 469 | 517 | 550 | 583 | 616 | 649 | 682 | 684 | 717 | 750 | 783 | 816 | 369 | 850 | 883 | 916 | 949 | 22 | 55 | 88 | 121 | 154 | 156 | 189 | 222 | 255 | 288 | 321 | |
| 13 | 418 | 451 | 468 | 516 | 549 | 582 | 615 | 648 | 681 | 683 | 716 | 749 | 782 | 815 | 848 | 401 | 882 | 915 | 948 | 21 | 54 | 87 | 120 | 153 | 186 | 188 | 221 | 254 | 287 | 320 | 353 | |
| 14 | 450 | 467 | 515 | 548 | 581 | 614 | 647 | 680 | 713 | 715 | 748 | 781 | 814 | 847 | 880 | 433 | 914 | 947 | 20 | 53 | 86 | 119 | 152 | 185 | 187 | 220 | 253 | 286 | 319 | 352 | 385 | |
| 15 | 466 | 514 | 547 | 580 | 613 | 646 | 679 | 712 | 714 | 747 | 780 | 813 | 846 | 879 | 912 | 465 | 946 | 19 | 52 | 85 | 118 | 151 | 184 | 217 | 219 | 252 | 285 | 318 | 351 | 384 | 417 | |
| 16 | 513 | 546 | 579 | 612 | 645 | 678 | 711 | 744 | 746 | 779 | 812 | 845 | 878 | 911 | 944 | 481 | 18 | 51 | 84 | 117 | 150 | 183 | 216 | 218 | 251 | 284 | 317 | 350 | 383 | 416 | 449 | |
| 17 | 545 | 578 | 611 | 644 | 677 | 710 | 743 | 745 | 778 | 811 | 844 | 877 | 910 | 943 | 16 | 497 | 50 | 83 | 116 | 149 | 182 | 215 | 248 | 250 | 283 | 316 | 349 | 382 | 415 | 448 | 496 | |
| 18 | 577 | 610 | 643 | 676 | 709 | 742 | 775 | 777 | 810 | 843 | 876 | 909 | 942 | 15 | 48 | 529 | 82 | 115 | 148 | 181 | 214 | 247 | 249 | 282 | 315 | 348 | 381 | 414 | 447 | 495 | 512 | |
| 19 | 609 | 642 | 675 | 708 | 741 | 774 | 776 | 809 | 842 | 875 | 908 | 941 | 14 | 47 | 80 | 561 | 114 | 147 | 180 | 213 | 246 | 279 | 281 | 314 | 347 | 380 | 413 | 446 | 494 | 511 | 544 | |
| 20 | 641 | 674 | 707 | 740 | 773 | 806 | 808 | 841 | 874 | 907 | 940 | 13 | 46 | 79 | 112 | 593 | 146 | 179 | 212 | 245 | 278 | 280 | 313 | 346 | 379 | 412 | 445 | 493 | 510 | 543 | 576 | |
| 21 | 673 | 706 | 739 | 772 | 805 | 807 | 840 | 873 | 906 | 939 | 12 | 45 | 78 | 111 | 144 | 625 | 178 | 211 | 244 | 277 | 310 | 312 | 345 | 378 | 411 | 444 | 492 | 509 | 542 | 575 | 608 | |
| 22 | 705 | 738 | 771 | 804 | 837 | 839 | 872 | 905 | 938 | 11 | 44 | 77 | 110 | 143 | 176 | 657 | 210 | 243 | 276 | 309 | 311 | 344 | 377 | 410 | 443 | 491 | 508 | 541 | 574 | 607 | 640 | |
| 23 | 737 | 770 | 803 | 836 | 838 | 871 | 904 | 937 | 10 | 43 | 76 | 109 | 142 | 175 | 208 | 689 | 242 | 275 | 308 | 341 | 343 | 376 | 409 | 442 | 490 | 507 | 540 | 573 | 606 | 639 | 672 | |
| 24 | 769 | 802 | 835 | 868 | 870 | 903 | 936 | 9 | 42 | 75 | 108 | 141 | 174 | 207 | 240 | 721 | 274 | 307 | 340 | 342 | 375 | 408 | 441 | 489 | 506 | 539 | 572 | 605 | 638 | 671 | 704 | |
| 25 | 801 | 834 | 867 | 869 | 902 | 935 | 8 | 41 | 74 | 107 | 140 | 173 | 206 | 239 | 272 | 753 | 306 | 339 | 372 | 374 | 407 | 440 | 488 | 505 | 538 | 571 | 604 | 637 | 670 | 703 | 736 | |
| 26 | 833 | 866 | 899 | 901 | 934 | 7 | 40 | 73 | 106 | 139 | 172 | 205 | 238 | 271 | 304 | 785 | 338 | 371 | 373 | 406 | 439 | 487 | 504 | 537 | 570 | 603 | 636 | 669 | 702 | 735 | 768 | |
| 27 | 865 | 898 | 900 | 933 | 6 | 39 | 72 | 105 | 138 | 171 | 204 | 237 | 270 | 303 | 336 | 817 | 370 | 403 | 405 | 438 | 486 | 503 | 536 | 569 | 602 | 635 | 668 | 701 | 734 | 767 | 800 | |
| 28 | 897 | 930 | 932 | 5 | 38 | 71 | 104 | 137 | 170 | 203 | 236 | 269 | 302 | 335 | 368 | 849 | 402 | 404 | 437 | 485 | 502 | 535 | 568 | 601 | 634 | 667 | 700 | 733 | 766 | 799 | 832 | |
| 29 | 929 | 931 | 4 | 37 | 70 | 103 | 136 | 169 | 202 | 235 | 268 | 301 | 334 | 367 | 400 | 881 | 434 | 436 | 484 | 501 | 534 | 567 | 600 | 633 | 666 | 699 | 732 | 765 | 798 | 831 | 864 | |
| 30 | 961 | 3 | 36 | 69 | 102 | 135 | 168 | 201 | 234 | 267 | 300 | 333 | 366 | 399 | 432 | 913 | 435 | 483 | 500 | 533 | 566 | 599 | 632 | 665 | 698 | 731 | 764 | 797 | 830 | 863 | 896 | |
| 31 | 2 | 35 | 68 | 101 | 134 | 167 | 200 | 233 | 266 | 299 | 332 | 365 | 398 | 431 | 464 | 945 | 482 | 499 | 532 | 565 | 598 | 631 | 664 | 697 | 730 | 763 | 796 | 829 | 862 | 895 | 928 |
Instead of shifting all rows in one direction and all columns in another, you can shift each half of the table in opposite directions (always skipping the middle row or column). This produces the same result using a mirror-symmetry pattern.
Alternative Approach: Bidirectional Shifting
Initial square with numbers 1 -
n2 in
sequence
![]() |
||||||
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| 15 | 16 | 17 | 18 | 19 | 20 | 21 |
| 22 | 23 | 24 | 25 | 26 | 27 | 28 |
| 29 | 30 | 31 | 32 | 33 | 34 | 35 |
| 36 | 37 | 38 | 39 | 40 | 41 | 42 |
| 43 | 44 | 45 | 46 | 47 | 48 | 49 |
|
||||||
After the first pass: Notice how each column is equal to
Σ
![]() |
2 | 3 | 4 | 5 | 6 | 7 | 1 | ![]() |
| 10 | 11 | 12 | 13 | 14 | 8 | 9 | ||
| 18 | 19 | 20 | 21 | 15 | 16 | 17 | ||
| 22 | 23 | 24 | 25 | 26 | 27 | 28 | ||
| 33 | 34 | 35 | 29 | 30 | 31 | 32 | ||
| 41 | 42 | 36 | 37 | 38 | 39 | 40 | ||
| 49 | 43 | 44 | 45 | 46 | 47 | 48 |
Second pass completed: Now each row is also equal to Σ. The Magic Square is ready!
| 10 | 19 | 24 | 5 | 30 | 39 | 48 |
| 18 | 23 | 35 | 13 | 38 | 47 | 1 |
| 22 | 34 | 36 | 21 | 46 | 7 | 9 |
| 33 | 42 | 44 | 25 | 6 | 8 | 17 |
| 41 | 43 | 4 | 29 | 14 | 16 | 28 |
| 49 | 3 | 12 | 37 | 15 | 27 | 32 |
| 2 | 11 | 20 | 45 | 26 | 31 | 40 |
Universal Closed-Form Formula
In addition to the algorithmic construction method described above, the Mamzeris Method includes a universal closed-form formula that directly computes the value at any cell position without performing iterative shifts. This formula was published in my 2025 paper: Universal Closed-Form Construction for Odd-Order Magic Squares (The Mamzeris Method).
Key advantages of the closed-form formula:
- Direct computation: Calculate any individual cell value without constructing the entire square
- Computational efficiency: Ideal for programming, large squares, or sparse calculations
- Mathematical completeness: Provides explicit mathematical expression for the entire construction
- Validation tool: Verify algorithmic constructions or explore specific patterns
Formula notation (simplified overview):
For any odd order N ≥ 3, the value V(x, y) at cell position (x, y) is computed using modular arithmetic based on row and column shift functions. The complete formula with detailed notation, worked examples, and step-by-step calculations is available in the published paper.
Example calculation: For a 5×5 magic square, to find the value at position (3, 4):
- Using the formula: V(3, 4) = 16
- This matches the algorithmically constructed square shown above
The formula works for any odd-order magic square and produces results identical to the algorithmic method, providing two complementary ways to understand and generate these mathematical structures.
Understanding How the Method Works
This section explains the mathematical insight behind why the two-pass transformation creates a magic square of odd order. Understanding the balance of row and column sums reveals the elegance of the method.Key Variables:
n = the square's dimension (for a 7×7 square, n = 7)
M = (n2 + 1)/2 = the middle number (located at the center)
Σ = M×n = the magic constant (target sum for each row, column, and diagonal)
r = distance from the middle row or column
The Balancing Principle:
When we fill the initial square (1) with numbers 1 to n2 in sequence, each row and column has a different sum based on its distance from the center. This creates predictable "weight" imbalances:
For columns:
• Moving left from center: each column's sum = Σ - r×n
• Moving right from center: each column's sum = Σ + r×n
For rows:
• Moving up from center: each row's sum = Σ - (r×n2)
• Moving down from center: each row's sum = Σ + (r×n2)
Pass 1 - Balancing the Rows:
The first pass shifts cells left by increasing amounts (row 1 shifts by 1, row 2 by 2, etc.), skipping the middle row. This creates square (2) where all row sums equal Σ.
The key insight: cells shifted off the left edge wrap to the right, adding exactly the right amount to compensate for each row's initial imbalance. The top row gains +1, the next gains +2, and so on, perfectly counterbalancing the initial deficits.
Pass 2 - Balancing the Columns:
The second pass applies the same logic to columns, shifting cells upward by increasing amounts. This transforms square (2) into square (3), where all column sums also equal Σ, creating a perfect magic square.
Visual Guide to the Tables Below:
Left tables: Show each cell's value relative to n (the algebraic view)
Right tables: Show actual numeric values as the square transforms
Green cells: Display row and column sums (diagonals always equal Σ)
Blue cells: Track the middle row and column positions through both passes
Square (3): The completed magic square with all properties satisfied
![]() |
||||||||||||||||||||
| Σ | 175 | Σ | ||||||||||||||||||
| n-6 | n-5 | n-4 | n-3 | n-2 | n-1 | n | Σ -(3n2) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 28 | Σ -(3n2) | ||||
| n+1 | n+2 | n+3 | n+4 | n+5 | n+6 | n+7 | Σ -(2n2) | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 77 | Σ -(2n2) | ||||
| n+8 | n+9 | n+10 | n+11 | n+12 | n+13 | n+14 | Σ -(1n2) | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 126 | Σ -(1n2) | ||||
| n+15 | n+16 | n+17 | n+18 | n+19 | n+20 | n+21 | Σ | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 175 | Σ | ||||
| n+22 | n+23 | n+24 | n+25 | n+26 | n+27 | n+28 | Σ +(1n2) | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 224 | Σ +(1n2) | ||||
| n+29 | n+30 | n+31 | n+32 | n+33 | n+34 | n+35 | Σ +(2n2) | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 273 | Σ +(2n2) | ||||
| n+36 | n+37 | n+38 | n+39 | n+40 | n+41 | n+42 | Σ +(3n2) | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 322 | Σ +(3n2) | ||||
| Σ | 175 | Σ | ||||||||||||||||||
| 154 | 161 | 168 | 175 | 182 | 189 | 196 | ||||||||||||||
| Σ -(3n) | Σ -(2n) | Σ -(1n) | Σ | Σ +(1n) | Σ +(2n) | Σ +(3n) | Σ -(3n) | Σ -(2n) | Σ -(1n) | Σ | Σ +(1n) | Σ +(2n) | Σ +(3n) | |||||||
![]() |
||||||||||||||||||||
| Σ | 175 | Σ | ||||||||||||||||||
| n-5 | n-4 | n-3 | n-2 | n-1 | n | n-6 | Σ -(3n2) | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 28 | Σ -(3n2) | ||||
| n+3 | n+4 | n+5 | n+6 | n+7 | n+1 | n+2 | Σ -(2n2) | 10 | 11 | 12 | 13 | 14 | 8 | 9 | 77 | Σ -(2n2) | ||||
| n+11 | n+12 | n+13 | n+14 | n+8 | n+9 | n+10 | Σ -(1n2) | 18 | 19 | 20 | 21 | 15 | 16 | 17 | 126 | Σ -(1n2) | ||||
| n+15 | n+16 | n+17 | n+18 | n+19 | n+20 | n+21 | Σ | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 175 | Σ | ||||
| n+26 | n+27 | n+28 | n+22 | n+23 | n+24 | n+25 | Σ +(1n2) | 33 | 34 | 35 | 29 | 30 | 31 | 32 | 224 | Σ +(1n2) | ||||
| n+34 | n+35 | n+29 | n+30 | n+31 | n+32 | n+33 | Σ +(2n2) | 41 | 42 | 36 | 37 | 38 | 39 | 40 | 273 | Σ +(2n2) | ||||
| n+42 | n+36 | n+37 | n+38 | n+39 | n+40 | n+41 | Σ +(3n2) | 49 | 43 | 44 | 45 | 46 | 47 | 48 | 322 | Σ +(3n2) | ||||
| Σ | 175 | Σ | ||||||||||||||||||
| 175 | 175 | 175 | 175 | 175 | 175 | 175 | ||||||||||||||
| Σ | Σ | Σ | Σ | Σ | Σ | Σ | Σ | Σ | Σ | Σ | Σ | Σ | Σ | |||||||
![]() |
||||||||||||||||||||
| Σ | 175 | Σ | ||||||||||||||||||
| n+3 | n+12 | n+17 | n-2 | n+23 | n+32 | n+41 | Σ | 10 | 19 | 24 | 5 | 30 | 39 | 48 | 175 | Σ | ||||
| n+11 | n+16 | n+28 | n+6 | n+31 | n+40 | n-6 | Σ | 18 | 23 | 35 | 13 | 38 | 47 | 1 | 175 | Σ | ||||
| n+15 | n+27 | n+29 | n+14 | n+39 | n | n+2 | Σ | 22 | 34 | 36 | 21 | 46 | 7 | 9 | 175 | Σ | ||||
| n+26 | n+35 | n+37 | n+18 | n-1 | n+1 | n+10 | Σ | 33 | 42 | 44 | 25 | 6 | 8 | 17 | 175 | Σ | ||||
| n+34 | n+36 | n-3 | n+22 | n+7 | n+9 | n+21 | Σ | 41 | 43 | 4 | 29 | 14 | 16 | 28 | 175 | Σ | ||||
| n+42 | n-4 | n+5 | n+30 | n+8 | n+20 | n+25 | Σ | 49 | 3 | 12 | 37 | 15 | 27 | 32 | 175 | Σ | ||||
| n-5 | n+4 | n+13 | n+38 | n+19 | n+24 | n+33 | Σ | 2 | 11 | 20 | 45 | 26 | 31 | 40 | 175 | Σ | ||||
| Σ | 175 | Σ | ||||||||||||||||||
| 175 | 175 | 175 | 175 | 175 | 175 | 175 | ||||||||||||||
| Σ | Σ | Σ | Σ | Σ | Σ | Σ | Σ | Σ | Σ | Σ | Σ | Σ | Σ |

Variations
The Mamzeris Method is remarkably flexible. By changing the shift directions, you can generate different magic squares for the same order:
• Left-shift + Up-shift (demonstrated above)
• Right-shift + Down-shift
• Left-shift + Down-shift
• Right-shift + Up-shift
Each direction combination produces a unique magic square while maintaining all magic properties.
Below are four variations of a 19×19 associative magic square. Each uses the same two-pass technique with different shift directions. Cells are colour-coded by their numerical value to reveal the distinct patterns each variation creates.
![]() |
![]() |
|
![]() |
![]() |

Permutations
Beyond the four basic variations, each magic square has multiple permutations—different arrangements that preserve all magic properties. You can generate these by:
• Symmetrically shifting rows or columns
• Rotating the four quadrants
• Combining these transformations
Each permutation created by shifting rows can itself generate additional permutations through column shifts or quadrant rotations, and vice versa.
The Number of Permutations
The total number of permutations for each variation is given by:
Since the method allows four different variations, the total number of distinct magic squares for any odd order is 4×P.
For example, a 7×7 square yields 4 × 576 = 2,304 distinct magic squares.
Below are several examples (non-exhaustive) showing different permutations of a 7×7 magic square:
|
|
|
|
|
|
|
|
|
|
|
|
Each magic square can be rotated 90° in any direction to produce four different perspectives, all maintaining the magic properties.
Rotations and Reflections
| 4 | 3 | 8 | 8 | 1 | 6 | |
| 9 | 5 | 1 | 3 | 5 | 7 | |
| 2 | 7 | 6 | 4 | 9 | 2 | |
![]() |
||||||
| 6 | 7 | 2 | 2 | 9 | 4 | |
| 1 | 5 | 9 | 7 | 5 | 3 | |
| 8 | 3 | 4 | 6 | 1 | 8 |
Additionally, each magic square can be mirrored (reflected) horizontally or vertically to create four more variations. This means a 3×3 magic square has eight distinct orientations (4 rotations + 4 mirrored versions).
These rotation and reflection transformations preserve magic square properties and work for any magic square. Each transformation maintains the equal-sum property for all rows, columns, and diagonals.
For any comments or questions, please email me at contact@oddmagicsquares.com
Smaragdos (Marios) Mamzeris - Magic Squares










